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For many HPC codes the major cost lies in the solution of large sparse linear systems [1]. For
many problems, the methods of choice for such systems are preconditioned Krylov solvers. How-
ever, Krylov solvers are hard to scale to a large numbers of cores due to two main bottlenecks:
the inter-node latency and the on-node bandwidth. In this position paper, we review recently
proposed techniques to overcome each of these bottlenecks and we put forward possible ways to
achieve preconditioned Krylov solvers that efficiently use all the resources on many-core chips
and are extremely scalable on massively parallel machines. A key ingredient in our approach is
the use of stencil compilers.

Future supercomputers will have a large number of nodes, each being a many-core processor.
In addition, the cores will feature vector processing units (VPU) with very long vectors. New
algorithms and software should exploit these three levels of parallelism.

On massively parallel machines, global communication should be avoided as much as possi-
ble. Global communication is very expensive due to the large latency on the wire, unless it can
be overlapped with calculations. In Krylov solvers, there are usually at least two such global
communication phases per iteration, used for orthogonalization and normalization of the Krylov
base vectors. In the standard formulation of most Krylov methods, there is no possibility to
overlap this communication with local work, which leads to a bulk synchronous execution pat-
tern that leaves many resources idle. Recently, pipelined Krylov methods [6, 7] reorganized the
algorithms with only one global reduction per iteration. The reduction’s latency can be over-
lapped with other work such as the (preconditioned) sparse matrix-vector product ((P)SpMV).
While the reduction takes place in the background, new Krylov base vectors can be computed
using the (P)SpMV. Only when enough (P)SpMVs have been computed to completely hide
the global communication latency, an orthogonalization and normalization step is performed.
This deferred orthogonalization obviously changes the numerical properties of the Krylov al-
gorithm. However, since only very few (P)SpMVs are required to completely hide the global
latency, numerical stability is mildly affected. This can be remediated by introducing shifts in
the (P)SpMV that prevents the base vectors from aligning to the dominant eigenvector and
results in an improved Krylov basis.

Pipelined methods lift the main bottleneck for scaling Krylov solvers to extreme numbers
of cores and the resulting solver scales as well as the (P)SpMV. For many applications, good
scalability for the sparse matrix-vector product (SpMV) can be achieved even for 100k cores, if
the problem is partitioned such that there is only local communication. For the preconditioner,
there is typically a trade-off between parallelism and efficiency. We expect pipelined methods
to be better suited for cheap preconditioners with a high degree of parallelism. 2

Although the (P)SpMV may scale well on a distributed memory system, the on-node per-
formance may still be poor. Within a node, the different threads have to share the available
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resources such as memory bandwidth, VPUs and so on. It is expected that the current trend
will continue after the introduction of new memory technologies, such as 3D stacked memory,
although they will temporarly diminish the bandwidth bottleneck. Typically, a SpMV has a
very low flop per memory transaction rate, the so-called arithmetic intensity. Hence the perfor-
mance of a SpMV is severely limited by the memory bandwidth. The same statement usually
holds for the AXPY and dot-products and many preconditioners.

One way to reduce memory accesses is to reorganize the algorithms so that a sequence of
(P)SpMVs is applied together as in s-step methods [9, 5, 8] or polynomial preconditioners.
This reduces the number of writes and reads to and from slower memory. Many existing codes
are designed around a SpMV provided by the application programmer in a separate routine,
but general purpose compilers are unable to merge these operations together when compiling
current libraries. However, when the SpMV is written as a repeated stencil operation, stencil
compilers such as [10, 2, 4] can merge the sequence of SpMVs together using time-skewing
techniques that increase the arithmetic intensity. For general sparse matrix formats, we are not
aware of any library or technique that achieve this goal. Different data formats lead to different
opportunities for the implementation of computational kernels. When the matrix is stored in a
sparse format, the ordering of the sparse matrix is crucial for good performance of a SpMV on
multicore machines [12]. It is an open question how to increase the arithmetic intensity of these
SpMVs in a power sequence. Similarly, most current preconditioning software is not designed
for such operation. Only when the (P)SpMV has sufficiently high arithmetic intensity, the codes
can use the full potential of the VPUs on the many-core chip [11]. Exploiting the dense nature
of finite element matrices can also lead to an increase of arithmetic intensity [11].

The challenge is now to combine algorithmic advances for multi-node and many-core sys-
tems. Indeed, it is necessary to hide, at the same time, the latencies of the global reductions
and increase arithmetic intensity of the (P)SpMV. We believe that for preconditioned Krylov
methods this can be achieved by a combination of s-step methods (or polynomial precondi-
tioning) and pipelining. But this requires a redesign of the Krylov subspace algorithms and
preconditioning techniques around stencil compilers instead of a user written SpMV routine.
The pipelining approach allows for scalable preconditioned Krylov solvers on massively parallel
machines whereas the s-step approach can increase arithmetic intensity and hence on-node per-
formance of the (P)SpMV. In the pipelined outer Krylov solve, stability is only mildly affected
since the pipelining depth will be small.

Furthermore, multilevel methods can exploit the fact that the cost (both in execution time
as in energy) of intra-node data access is significantly lower than between nodes. This implies
that there is more freedom in choosing preconditioners on a node, while this is not so for
preconditioning the data on different nodes. In multilevel approaches the preconditioner or the
entire solver can be reorganized in a tree that is mapped on the hardware. The operations of
the solver related to the vertices of the tree near the root require data from nodes that are far
away, while the vertices related to a node only use local data. A major challenge is to design
multilevel solvers that exploit such structure and that require only few iterations on the root
vertex of the tree. In multigrid, the coarse grid solve could be performed by another (multilevel)
method. The root level could be related to a Krylov solve over the entire system, or it could be
a direct solver on a small Schur complement that is solved on each node independently.

Summary: We see an opportunity to leverage the potential of state-of-the-art compiler op-
timizations to increase the arithmetic intensity and hence the performance of Krylov solvers.
Merging as many individual low arithmetic intensity steps as possible can be achieved by using
tools such as [2, 3]. Additional opportunities are repeated stencil applications, for instance in
polynomial preconditioning, that could also benefit from these stencil compilers. The combina-
tion of these techniques with a pipelined Krylov solver, which in theory could scale as well as
the SpMV, will result in algorithms that are scalable both within the node and over massively
parallel distributed memory machines.
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